BOWLER

Discriminative Efficiency for Varying
Degrees of Brightness Intensity

Psychology
A.M.

1911
路

Digitized by the Internet Archive in 2013

DISCRIMINATIVE EFFICIENCY FOR VARYING DEGREES OF BRIGHTNESS INTENSITY

ALIDA CYNTHIA BOWLER
A. B. University of Illinois, I9IO

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF ARTS

IN PSYCHOLOGY

IN

THE GRADUATE SCHOOL of tee

UNIVERSITY OF ILLINOIS

19II

UNIVERSITYOFILLINOIS THE GRADUATE SCHOOL

June 3.
19011

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

> Alida Cynthia Bowler

ENTITLEDDrscriminative Efficiency for Varying Degrees pf

Brightness Intensity

BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE

DEGREE OF Master of Arts in Psychology

Recommendation concurred in:
$\left\{\begin{array}{c}\text { Committee } \\ \text { on } \\ \text { Final Examination }\end{array}\right.$
e

The following study undertakes to determine: (1) the course of discriminative ability with visual stimuli of varying intensities, and (2) the maximum discriminative efficiency corresponding to an "optimal" brightness intensity.

Work along associated lines has been cirried on by HeDougall? ${ }^{(1)}$ and Froeberg ${ }^{(2)}$ who heve studied the effect of varying intensities of stimulation upon the time of reaction. McDougill, using darkness, $2 \mathrm{c} \cdot \mathrm{p}$. and $16 \mathrm{c} \cdot \mathrm{p}$. lamps, finds that reactions to auditory stimuli are more rapid, tho' less regular, in the ste.te of darkness and of 2 c.p. illumination, then uner $16 \mathrm{c} \cdot \mathrm{p}$. This inaicates that there is an "optimal" intensity for reaction rapiaity, and that this optinum lies at a vcry low point in the brightness scale. McDougull explains this as probebly due to the influence of mental attitudes, conditiored by factors of novelty and attention. His work does not include observations as to the effect of correspondingly high intensities upon the reaction time. Froeberg, whose reactions are to the visual stimuli, noiselessly exposed, finds that the reaction time increases as the intensity of the stimulus decreases, that the shortest reaction
(1) IncDougall, Fobt. On the Influence of Verying Intensities and qualities of Visual Stinulation upon the Rapiaity of Reactions to Luaitory Stimuli. Amer. J. Physjol., 1903, 9, 116.
(2) Sven Froeberg. The Iielation between the ilagnitude of the Stimulus and the Time of Reaction. N.Y. 190%.
time corresponds to the highest intensity, with a gradual increase In reaction tine with lowering intensities. Heoffers no explenation. The rosults of this study indicate that there is ${ }_{n}^{2 \pi}$ "optimum" brightness for discriminative efficiency at the same rolatively low point (l c.p. - 2 c.p.) found by IIcDougall for reaction time. Noreover, a very similar explanation will be offered, viz. that this relatively lov "optimum" brightness is very probably due to certain distractions attending the attentive processos.

I The Technique of the Experiments.

The apparatus governing the experiments consists essertially of a Bowitsch-Boltzar Contact Llock , a Wunat Demonstretion-Momory Apparatus and a Jastrow Fall-Shutter apparatus as nodified by Kuhlman. Tho cooperation of the apparatus is illustrated in Figure 1, which gives a schematic plan of the arrangement. To minimize distraction, the operating switch and memory apparatus were placed in a durlk room, the clock and the modified fall-shutter in an adjoining room. The dotted lines (Fig. 1) 1, 2, 3, 4 and 5 indicate the separation of these rooms, ercept that a vacant room intervenes between the two mentioned rooms.

The clock (K) makes two contacts for every complete swing of the peniulum. When the switch (S) is closed (in position sho:m) the current is allowed to flow through the magnets, p and p ', which attract the armature, d, which in turn operstes the ratchet wheols, r and r^{\prime}. Upon the periphery of these wheels are extended points which come in contact with brushes, saud s^{\prime}. The contacts of these points with the brushes close the circuits, e and e', alterni.tely (ratchet wheels r and r^{\prime} closing respoctively circuits e and e'). Circuits e and e^{\prime} are connected through the magnets p_{1} and p_{2} of the memory apparatus, ... The armatures, c and c^{\prime} of the magnets p, and p_{2}, re attached to the releasing mechanism, F. Closing circuit, e, inăuces the rotation of the disk (D) by the withdrawal of the armature, c. This brings the normil stimulus (II) into position. The comparetive stimulus (0) is automatically brought into position by closing circuit, c^{\prime} (et contact r^{\prime}) which operates the witharawal of armature, c^{\prime}. The operating force of the disk is supplied by means of a chain and meight (H).

The time interval of the normal and comparative stimuli is determined by the spacing of the contact points of the ratchet wheels, r and r^{\prime}, and upon the length of the poriod of the pendulum.

Dotails of the stimulus aperture (S), of the rotating disk (D), and the illuminatinf ${ }_{\lambda}^{\text {b }}$ (B) are diagramatically shom in II of Figure 2. Part I shows the same details in cross section.

The disk is constructed of light zinc pierced with twelve rectent gular apertures corresponcing in position and securely fastened to the twelve aluminum erms of the Fund ifemory Apparatus (w).

The rectangularslit (S) is 10 mm . Wide and 40 mrn . long for the normsl stimulus, By means of a shutter, i, secured in place by a thumbscrew, h, the length of the slit may be veried to suit the desired values of the comparative stimulus. The width of the slit remains constant for both normal and cimparative stimuli, while the wiath and length of the norm romain constant for all experiments.

Behind the stimulus aperture (S), is stationed a dark bor (B) containing a lamp of the desired c.p. cmployed in a given series of experiments. An opening somehwat lerger than the aperture, and directly behind it, is provided in the boz (O, part I). This opening is covered with trecing cloth minch diffuses the light.

A discrepancy exists between the photametric measurements of the 80 c.p. tungsten lamp and the 50 c.p. carbon filament lamp. iccording to the measurements, the intensity of the illuminated area 10 , Part I, Fig. 2) for the latter lamp enormously exceeds that of the former. A similar discrepancy exists betwecn the measurements of the 2- and 4 c.p. lamps. In this case, tho illumination for the former lamp approaches that of the latter. The explanation of these apparont variations is found in the position of the lamps in the dark vor
and in tho sizo of the lamps. The center of maximum illuminetion of the 50 c.p. lamp, bccause of its smaller size and higher position in the dark box, fell approximetely into the center of the illuminated area of the box. The tungsten lamp, on the other hend, being much larger, finces its center of maximum illumination well below the ilIuminatea arca of the dark box. The near approach of the photornctric measurcments of the $2 \mathrm{c} \cdot \mathrm{p}$. lamp to thet of the $4 \mathrm{c} \cdot \mathrm{p}$. Iamp is explained upon the same basis. These photometric measurements vere made by the orinary method with a Bunson photometer.

Fig. I. Scheratic Arrangement of Apparatas.

Fi9. 2. Profile (I) ard sectional (II) Views of the Stimulus Apertuxe (N,Fig.l.) and Illumination Box.

Fig. 3. Electrical k paratus for Pime Interval Control. (M,Fig.I.) (After Kuhlman.)

II Method.

Those who served as observers in this experiment are; Sophic Rogers (A), W. R. Maden (B), the writor (C) and Lulu Deztor (D). B and D had never sorved as observers, while A had sorved as "O", and C as both "E" and "O" in a memory experiment during the winter of 1909-1910.

The Wundtian Rethod of Minimal Changes was employed throughout. A, B and D were entirely ignorent of the purpose and plan of the experiment. To express their judgments in terms of "greater," "equel", or "less", and to give an introspective analysis of their judgments Whenever possiule constitute the sole instructions given. However, after a few weeks of obscrvation, all reported an awareness of the general run of the experiment, i.e., that it was a stuay of length discrimination under aifferent degrees of illuminction.

The observations were taken in a dark room. After an "adaptation" period of from five to ten minutes, "O" faced the rotrting disc, at a distance of 6.5 fect. The stimuli were rectangular apertures, constant in width, verying in length, illumineted by lamps of $\frac{1}{2}, 1,2,4,8,16,32,50,80$ and 100 c.p. These stimuli wore presented in pairs, each pair consisting of a "norm" (IT)", and a "compar tive" (C) ${ }^{2}$. Each pair constitutes a single experiment and six pairs make up a series. A slight pause was given after each Set single experimentsfor the purpose of resting "O"'s eyes. All
(1) II::width $=10 \mathrm{~mm} \cdot$, length $=40 \mathrm{~mm}$.
(2) C;:wioth $=10 \mathrm{~mm}$., lensth $=(I T+X)$ or (IV-X). X is a constant inorement or decrement, its value being . 25 mm . for obscrvers B and D, and .5 mm . for A and C , who, with $\mathrm{x}=.25 \mathrm{~mm}$., did not reach a point (within the sories of six pairs possible with this appiratus) where all their juagments were either "greater" or "less".
judgments are recoraed in terms of "greater" ($>$) , "equal" ($=$) and "less" $(<)$. Very often 0^{\prime} s judgmont is made during the caposure of of the second member of tho pair rather then after its complotion (1). About 120 judgments are taken at each sitting, 30 in ecch of four different series.

These four difforent types of scries are arranged as indicc.ted in the table below.

Pair											
	I			II			III			IV	
1	IN	- 40.25	mun.	N	C-41. 5	mm .	1.	$0-39.75$	mm .	N	c-38.5
2	"	" -40.5	"	11	"-41.35	1	11	" -39.5	"	17	"-38.75
3	"	"-40.75	"	11	"-11.0	"	"	"-39.25	11	"	"-39.0
4	"	"-41.0	"	"	"-40.75	"	"	"-39.0	"	11	"-39.25
5	"	"-41.25	"	11	"-40.5	11	"	"-38.75	"	"	"-39.5
6	"	" -41.5	11	11	"-40.25	"	"	" -38.5	"	"	"-39.75

Series I proceeds from a condition of apparent equality to a clearlä perceptible condition of "greater"; II, from a clearly perceptiule condition of "greater" down to apparent equality; III, from appacent equality to"Iess"; and IV, from "less" to apparent equality.

Two time-orders were enployed in the juugments obtained from A and B, while for C and D only the first was used. In the first timeorder (η_{1}), N is the first member of the pair, C the second. In the
(1) iayers is rathor inclined to take exception to these "immedinte" judgments, as he torms thom, contending that thoy involve no true comparison, no passing from Ist to ind stim., back to lst, etc. (Yet this very "true comparison", this "passing back and forth" invites the entrance of a disturbing factor, the fading of the memory patterns, their loss in aocuracy, the consequent indccision and the "guess" elcment.)

Nifyers. U.S. Tezt-book of Exper. Psych., p. 266.
scoond time-order $\left(T_{2}\right)$ their respective positions are revorsod. In all cases the judgments are given on \underline{C}.

By this method over 7200 judgments were recorded. Below is
a series taken at raniom from the records:

$$
\begin{aligned}
& \text { "E" - C. "O" - D. Series I. Tq. } 1 \text { c.o. } \\
& 40.25 \quad 40.5 \quad 40.75 \quad 41.0 \quad 41.25 \quad 41.5 \\
& \begin{array}{cccccc}
> & = & = & > & > & > \\
= & = & < & > & > & > \\
< & = & < & > & > & > \\
> & = & = & < & > & > \\
< & > & > & > & > & >
\end{array}
\end{aligned}
$$

Tho results werc cornputed by the "Halbierung-ilethoce". The averages of the "greater", "less", and "equal" juegments are computed separately. The two former are then combined, and this in turn is combined with the equality avorage. The final result is O's discriminative efiiciency under the given conditions. In cases where aperfect score is obtained the average is placed midwey between II and the smallest C used. Take for example, the following:

The average would be taken as 40.125 mm ., or halfway wetween IT (40 mm.$)$ and the smallest $C(40.25)$.

III. Results of the Experiments.

In the wables that follow are indicated the results of the investigation. Laun table contains averages from 1200 judgments, 120 for each of the ten lights used.

TABLE II

Bright-
ness
sity I I III IV I\&II IIIOIV
$\begin{array}{llllllllll}\frac{1}{2} & \text { c.p. } & 40.65 & 41.00 & 38.58 & 38.69 & 40.82 & 39.63 & .82 & 1.37 \\ 1.09\end{array}$
$\begin{array}{llllllllll}1 & \text { c.p. } & 40.63 & 40.25 & 38.98 & 39.19 & 40.44 & 39.08 & .44 & .93\end{array}$
2c.p. $40.63 \quad 40.25 \quad 39.07 \quad 39.03 \quad 40.44 \quad 39.05 \quad .44 \quad .95 \quad .69$
$\begin{array}{llllllllllll}\leqslant \text { c.p. } & 40.87 & 40.65 & 39.01 & 30.80 & 40.76 & 38.90 & .76 & 1.10 & .93\end{array}$
$\begin{array}{llllllllll}8 \text { c.p. } & 41.32 & 40.87 & 38.42 & 38.79 & 41.09 & 38.60 & 1.09 & 1.40 & 1.24\end{array}$ $\begin{array}{llllllllll}16 & \text { c.p. p. } & 40.99 & 40.70 & 39.00 & 39.05 & 40.84 & 39.02 & .84 & .98\end{array}$ $\begin{array}{lllllllllll}32 \mathrm{c.p} . & 40.87 & 40.25 & 38.67 & 38.54 & 40.56 & 38.60 & .56 & 1.40 & .38\end{array}$ $\begin{array}{lllllllllll}50 \text { c.p. } 40.65 & 40.63 & 33.74 & 38.53 & 40.64 & 38.63 & .64 & 1.37 & 1.00\end{array}$ 80 c.p. $40.25 \quad 40.25 \quad 38.81 \quad 38.64 \quad 40.25 \quad 38.72 \quad .25 \quad 1.28 \quad .76$ $100 \mathrm{c} . \mathrm{p} .40 .65 \quad 40.63 \quad 38.59 \quad 38.65 \quad 40.64 \quad 38.62 \quad .64 \quad 1.38 \quad 1.01$
"上"-C "O"-B T_{1}
Brightness Intensity

Series
Average
Incre--ecre- isverment mont age

$\frac{1}{2}$ c.p.	40.85	40.47	39.08	39.12	40.66	39.10	. 66	. 90	. 78
1 c.p.	40.73	40.83	39.29	39.09	40.78	39.19	. 78	. 81	. 79
$2 c \cdot p$.	40.87	40.12	39.87	39.87	40.49	39.87	. 49	. 13	.31
4 c.p.	40.76	40.83	39.87	39.87	40.79	39.87	. 79	. 13	. 46
8 c.p.	40.51	40.52	39.45	39.87	40.51	39.66	. 51	.34	. 42
$16 \mathrm{c} . \mathrm{p}$.	40.64	40.79	39.87	35.87	40.71	39.87	. 71	. 13	. 42
32 c.p.	40.67	40.73	39.29	39.37	40.70	39.33	.70	. 67	. 68
50 c. 0 .	40.68	40.90	39.52	39.16	40.79	39.34	. 79	. 66	.72
80 c.p.	40.87	40.71	39.52	39.04	40.79	39.28	. 79	. 72	.75
$100 \mathrm{c} . \mathrm{p}$.	40.84	40.74	39.19	39.27	40.79	39.23	.79	.77	. 78

TABIE IF

"E"-C "O"-B T_{2}

$\underline{\text { sity I II II IV I I II III心IV }}$

| $\frac{1}{2}-c \cdot p$. | 40.75 | 40.69 | 39.38 | 39.14 | 40.72 | 39.26 | .72 | .74 | .73 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 1 c.p. | 40.87 | 40.48 | 39.24 | 39.23 | 40.67 | 39.23 | .67 | .77 | .72 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$2 c \cdot p . \quad 40.12 \quad 40.62 \quad 39.53 \quad 33.58 \quad 40.37 \quad 39.55 \quad .37 \quad .45 \quad .41$

| 4 c.p. | 40.12 | 40.85 | 39.26 | 38.91 | 40.48 | 39.08 | .48 | .32 | .70 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

8 c.p. $\quad 40.37 \quad 40.50 \quad 39.28 \quad 39.26 \quad 40.43 \quad 39.27 \quad .43 \quad .73 \quad .58$
16 c.p. $40.12 \quad 40.12 \quad 39.25 \quad 39.25 \quad 40.12 \quad 39.25 \quad .12 \quad .75 \quad .43$
$\begin{array}{lllllllllll}32 \text { c.p. } & 40.45 & 40.57 & 39.30 & 39.19 & 40.51 & 39.24 & .51 & .76 & .63\end{array}$
$\begin{array}{lllllllllll}50 & 0.2\end{array} 40.66 \quad 40.88 \quad 39.29 \quad 39.38 \quad 40.77 \quad 39.33 \quad .77 \quad .67 \quad .72$
$\begin{array}{lllllllllll}80 & \text { c.p. } & 40.37 & 40.12 & 39.19 & 39.15 & 40.24 & 39.17 & .34 & .83 & .53\end{array}$
$\begin{array}{lllllllllllll}100 & \text { c.p. } & 40.37 & 40.86 & 39.12 & 39.31 & 40.87 & 39.21 & .87 & .79 & .83\end{array}$
＂ごーが＂O＂－O T1

＂E＂－C＂O＂－D T_{2}

Bright－ ness Inten－ sjty	Scries			Average		Incre－Decre－Aver－ ment ment age		
	II	III	IV	I\＆II	IIİIV			
$\frac{1}{2} \mathrm{c} \cdot \mathrm{p} \cdot 40.71$	40.47	39.18	39.42	40.59	39.30	． 59	.70	． 64
1 c．p． 40.66	40.76	39.45	39.41	40.71	39.43	． 71	． 57	． 64
$2 \mathrm{c} \cdot \mathrm{p} \cdot 40.60$	40.33	39.19	39.25	40.46	39.22	． 4.6	.78	． 62
$\leq c \cdot p \cdot \leq 0.98$	40.52	39.30	39.34	40.75	39.32	.75	． 68	． 71
8 c．p． 40.35	40.41	39.31	39.24	40.38	39.27	． 38	.73	． 55
$16 \mathrm{c.p} .40 .60$	40.33	39.11	39.43	40.46	39.27	． 46	． 73	． 59
32 c．p． 40.37	40.50	39.31	39.11	40.43	39．21	． 43	． 79	． 61
50 c．p． 40.50	40.68	39.07	39.29	40.59	39.18	． 59	． 82	.70
80 c．p． 40.44	40.12	39.18	39.38	40.43	39.28	． 43	． 62	． 52
100 c p． 40.12	40.59	39.52	39.47	40.35	39.49	． 35	． 51	． 43

From the contents of Tables I - VI arc drawn the curves shown in Figues 4-14. Figures 4-7 give a graphic represent ion of the course of A's discriminative ability, Fgiures 8 - 11 B's and 12 - 13 C's and D's respectively. The curves ere numbered in the following manner.

Figure $4\left\{_{a}\left(I_{a}-\Psi_{1}\right.\right.$, incremental
" 5 ($_{t}-T_{1}$, decremental
$\left(z_{q}-T_{2}\right.$,
${ }^{11} 6\left(I_{c}-T_{1}\left(I_{a}\right.\right.$ and I_{f} combined)
$\left(2_{c}-T_{2}\left(2_{a}\right.\right.$ and $\left.2_{f} \quad{ }^{\prime \prime}\right)$
" $7\left(\alpha-l_{c}\right.$ and 2_{c} combined

Figure 8

$$
\begin{aligned}
& \left(I_{l}-T_{1},\right. \text { incremental } \\
& \left(2_{l}-T_{2},\right.
\end{aligned}
$$

" $91^{\left(I_{f}-I_{1} \text {, decremental }\right.}$

$$
i_{f}-T_{2}
$$

$$
\left(I_{g}-T_{1},\left(I_{e} \text { and } I_{f}\right. \text { combined) }\right.
$$

$$
12 g-T_{2}, 12 R
$$

" $11(\mathrm{~h}-\lg$ and $2 g$ combined

$$
\begin{equation*}
\binom{\left(I_{i}-T_{1},\right. \text { incremental }}{\left(I_{j}-I_{1},\right. \text { decremental }} \tag{D}
\end{equation*}
$$

Figure $12\left(I_{h}-I_{1}\right.$, incremental)

$$
\begin{equation*}
\left.\left(I_{l}-I_{1} \text {, decremental }\right)\right) \tag{C}
\end{equation*}
$$

Figure $13 r^{\left(I_{m}-T_{1}, I_{i} \text { and } I_{j} \text { combined }\right) D}$

$$
{ }^{i} I_{n}-I_{1}, I_{k} " I_{l} \quad \mid \quad \text { c }
$$

Below each cop. in the figures is given the relative value of that lame as shown by the hotometric measurements.
(

$\sin 2$

$$
2
$$

$$
\left(\begin{array}{c}
1 c, p . \\
(1.000)
\end{array}\right.
$$

$$
\begin{gathered}
2 c \cdot p \\
(3.196)
\end{gathered}
$$

$$
\begin{aligned}
& 4 c \cdot p . \\
& (3: 5731)
\end{aligned}
$$

$$
\begin{gathered}
16 c i+P_{0} \\
\hline
\end{gathered}
$$

$$
\begin{aligned}
& 32 a, ~ \\
& (\pi \pi s, 5)^{3}
\end{aligned}
$$

(
(z)

Tables I, II and V, first time-order rosults, show increment values greater than decrement values in 23 cases, equal in l, less in 6. Tubles II and IV, on the other hand, senond time order, show, in 19 out of the 20 cases, increment values less than decrement vasues. The first time-order indicates a lower throshold in decromental than in incremental serics, and the second time-order vice-区ersa. In the introspective data obtained from A this statement occurs several times, "It is so much easior to judge when the second member is less than the first." This"feeling of easier", it may be seen, coincides with greater officiency, since, in either time-orcier the observed increment and decrement values, respectively,ure lower when the second member of the pair is less then the first. Table VI (0 - D), however, shows the reverse to be true, i.e. the increment values are less than the decrement in 8 cases out of the 10 .

An ettempt to explain this veriation of D on the basis of different mothods of comparison fails, since $3, C$ and D agree in their description of how the jud ments were made. In the casc of B, C and D, during the exposure of the first member, the rectankuler stimulus is grasped as a thole ana rotained as a mental image which is "laià on" the secona member when it appears. The uagent is given accorüf ing to whether the second momber of tho stimulus pair extends beyond, coincides with, or falls short of, this "pattern" image. They report absolutely no awareness of eye-movements. A, howevcr, repeatcaly describes the process of comparison as consisting of eycmovements, a "running along" the lower edge of the rectangle. Evidently the kinaesthetic element connected with the eye-movements forms the basal element in A^{\prime} s judgments.

The first time-order shows a negative time-error in the direc-
tion of increase, a positive error in the direction of decrease. (Figures 4 and 7, 5 and 8.) The comuination of the incremental and decremental curves shows a neutralization of the time-error. (Figures 6 anả 10.)

The observers froquently gave their judgments immediately upon the exposure of the second momber of the stimulus pair, not waitins for the full duration. Obviously the stimulus duration, effective in proaucing the judgment, is a variable factor. To illustrate, suppose the line $a-b$ in the accompanying figure represents the duration of the stimulus. Any judgment falling on the line $a-b$, prion to its completion, must necessarily be based on sensory elements of less intensity than th t intended by the experiment, provided point b, of the hypothetical line $(a-b)$ represents the mazimum effect of the stimulus. Let 1,2 and 3 represent aifferent periods at which juăgments were eupreśseả, during, or atter the exposure.

If the judgment falls at 1 , obwiously 0 has not received the maximum effect of the lamp in use. Accoraing to Lough ${ }^{(1)}$ such a judgment should be counted as resulting from a sensation corresponaing to a lamp of lower intensity. In other words judgments should not be made until an interval has elapsed sufficient to produce the maximum effect of each lamp.

This has no practical validity. The objective, conditioning factors involved in a juagment may be controlled with a fair degree (1) "A strong stimulus actin\% for half the time necessary to produce its maximum cffect, gives rise to a sensation of exactly the same intensity as thet produced by half as strong a stimulus producing its maximum effect." Lough, Jas. E. Felation of Intensity to Iuration of Stimulus in Sensations of Iight. Psych. Rev. 1896, III, 484. (Harv.)
of accuracy; the culminating period of a judgment in expression is subjective, and in lurge measure beyond control. Only accidentally, and at rare intervals, do the completion of the stimulus, upon which the judement is expressed and the appearance of the judgments in consciousness, coincide. A large element of spontaneity enters into evory judgment, however much, as in cases of doubt, it appears restricted or hedged about. The crposure poriods of the normsl and comparative stimuli and the time-interval between them were empirically determined to the satisfaction of each reagent. The fluctuations in the time of formation of a judgment are subjective and uncontrollable; the time of expression, however, may be deiinitely controlled. On the side of accuracy it appears best to permit 0 to express his judgment st the time of formation. Any undue restriction or demand as to the time of expression may seriously affect accuracy in a judgment.

Caretul cxa ination of the various curves reveals a very decided rise and fall in the course of discriminative ability in the case of A, B and C. Curves I_{c}, I_{g}, and I_{n}, representing the course of A, B and C's efficicncy as obtained from first-time order results, show two distinct maxima in discriminative ability, one falling at approximately 2 c.p. illumination (3.196) for A and B and between I and 2 c.p. for C, the other appearing at approximately 80 (39.426) c.p. for $A, 16(13.934)$ c.p. for B, and $32(18.854)$ c.p. for C. The final maximum for \dot{A} and B falls at $2 c \cdot p .$, for C at $32 c \cdot p$. Curves d and h, representing the course of A and $B^{\prime} s a b i l i t y ~ a s ~ i n d i c a t e d ~ b y ~ r e-~$ sults from both time-orders, emphasize still further the indication of two points of maximal efficiency, one at a relatively lowintensit: (1-2c.p.) and a second falling at approximutely $16 \mathrm{c} \cdot \mathrm{p}$. for B
and a somewhat greater intensity for A. The high officiency at 2 c.p. is probably due to the influence of this low degree of illumination upon the attentive process. The facts indicute that at this point the unusual condition is just sufiicient distraction to intensify the attention, and consequently raise the efficiency. Thereas a still lomer intensity increases the difficulty of the task to a point where the attention is aepressed rather than stimulated.

The second maximum, which falls somewhere between $16 \mathrm{c} . \mathrm{p}$. and 80 (39.4) c.p. is probably the effect of habituation, since this is approximately the illumination which the ordinary student is accustomed to use, so theit his eyes are specially "adapted" or fitted to judge by it, while as the intensity is increased, physiological factors of strain, fatigue, etc., prove too great a distraction, interfering vithaccurate discrimination. Iforeover with the two highest intensities it was impossible to eliminate a certain amount of irradiation wilich easily proved a disturbing element.

D's curve (I_{m}) shows no particularly significant points, rising and falling quite irregularly. A study of the introspective data reveals a lack of concentration on the task in hand, and confirms the opinion that D offers an example of dispersed attontion.

IV• Summary of Rosults.

Briefly stated the conclusions warranted by the results discussed above are as follows:
(1) The course of discriminative ability with visual stinuli of varying intensitics shows a docided rise and fall.
(2) There are two maxima of discriminative efficiency, one at a rolatively low intensity ($2 \mathrm{c} . \mathrm{p}$.) and a second at a rather mediate point (approximately 32 c.p.)
(3) The first time-order is favorable to a lover threshold in the direction of decrease then of increase. The second time-order is favorable to a lower threshold in the direction of increase than of aecrease.
(4) In the first time-ordor the time error is negative in the direction of increase, positive in the direction of decrease.
(5) The time-order, therefore, is a more importent factor in the determination of the threshold than the direction of difference.
(6) Attention and practice are the two factors most effective in detormining discriminative ability.
(
(

